Convert monthly time series vector to a year x month data frame for several possible subsequent analyses. Leading and trailing empty rows are removed.

ts2df(x, mon1 = 1, addYr = FALSE, omit = FALSE)

Arguments

x

monthly time series vector

mon1

starting month number, i.e., first column of the data frame

addYr

rows are normally labelled with the year of the starting month, but addYr = TRUE will add 1 to this year number

omit

if TRUE, then rows with any NA will be removed.

Value

An n x 12 data frame, where n is the number of years.

Details

Our main use of ts2df is to convert a single monthly time series into a year x month data frame for EOF analysis of interannual variability.

monthCor finds the month-to-month correlations in a monthly time series x. It is useful for deciding where to start the 12-month period for an EOF analysis (mon1 in ts2df), namely, at a time of low serial correlation in x.

References

Craddock, J. (1965) A meteorological application of principal component analysis. Statistician 15, 143--156.

See also

Author

Alan Jassby, James Cloern

Examples


# San Francisco Bay station 27 chlorophyll has the lowest serial 
# correlation in Oct-Nov, with Sep-Oct a close second
chl27 <- sfbayChla[, 's27']
monthCor(chl27)
#> Jan-Feb Feb-Mar Mar-Apr Apr-May May-Jun Jun-Jul Jul-Aug Aug-Sep Sep-Oct Oct-Nov 
#>   0.621   0.439   0.210   0.553   0.575   0.707   0.898   0.768   0.225   0.019 
#> Nov-Dec Dec-Jan 
#>   0.979   0.352 

# Convert to a data frame with October, the first month of the 
# local "water year", in the first column
tsp(chl27)
#> [1] 1978.000 2009.583   12.000
chl27 <- round(chl27, 1)
ts2df(chl27, mon1 = 10, addYr = TRUE)
#>       Oct  Nov  Dec Jan  Feb  Mar  Apr  May Jun Jul  Aug Sep
#> 1978   NA   NA   NA 1.1  2.8  5.6  2.7  3.4 1.9 1.6   NA 1.7
#> 1979  2.1  2.2  1.7 1.9  1.8  2.4  3.8  2.3 4.8 1.6  3.9 2.1
#> 1980  1.2  1.1   NA 1.3  1.9  2.1 10.2  3.4 2.1 1.1  1.4 1.6
#> 1981  1.4  1.7  1.3  NA  1.7  2.0  9.1   NA  NA  NA   NA  NA
#> 1982   NA   NA   NA 2.8  4.5  6.5  9.3  8.2 3.4 1.4   NA 2.1
#> 1983  1.8  1.7  0.9  NA  1.4  7.0 16.4 16.6 5.4 1.4  1.7 2.0
#> 1984  1.5  1.5  1.4 1.9  2.8  3.0  9.8  3.5 1.2 1.7  2.3 2.9
#> 1985  1.4   NA   NA NaN  NaN 12.3  8.1  1.6 1.4 0.8   NA 2.0
#> 1986  1.5  1.1   NA 1.2  1.2  4.0 25.5  4.0 1.5 1.5   NA  NA
#> 1987  1.3  1.2  1.1 1.4  1.4  5.1  5.9  5.1 2.9 1.7  2.0 2.0
#> 1988  2.0  0.7  1.3  NA  4.1  5.2  6.8  2.2 3.0 2.8  2.7 1.7
#> 1989  3.2  1.6  1.6  NA  3.6 10.3 11.0  4.1 2.1 2.2  2.0 2.2
#> 1990  2.8   NA  1.2 2.1  NaN  5.4 15.0  3.1 2.0  NA  2.5  NA
#> 1991   NA   NA  1.9 1.7  1.9  3.7  8.2  6.3 5.0 NaN  1.9 2.2
#> 1992   NA  0.7  1.2 1.6  2.3  4.8 11.6  3.8 3.0 2.5  2.3 2.1
#> 1993   NA  1.7  1.3 1.3  1.8 22.1  9.8  2.9 1.7  NA   NA NaN
#> 1994  1.2  1.2  NaN 1.3  2.8 12.6  4.5  4.0 5.7 2.6  1.9 2.0
#> 1995  2.1  1.8   NA 1.5  7.6 22.9 12.9  5.4 1.7 1.2  1.2 1.9
#> 1996  6.4   NA   NA 1.0  1.2  6.6 11.5  3.8 0.4 1.1  1.1 1.6
#> 1997  2.2  2.3  1.4 4.0 12.6  6.9 11.4  1.9 1.3 2.7  1.7 2.9
#> 1998  2.6  2.6   NA 2.8  1.7 20.1 18.7  6.3 4.1 2.0  1.8 4.0
#> 1999   NA  1.8   NA 2.4  1.9 13.6 11.5  4.8 3.3  NA  3.4 2.3
#> 2000 16.2  2.4  2.2 3.3  3.2  9.3 13.4  3.3 1.7 1.8  2.6 3.0
#> 2001  2.6 39.4 25.6  NA  2.7 20.3 21.7  4.6 6.4 4.0   NA 2.9
#> 2002  3.3  2.7  3.6  NA   NA 15.9  8.3 10.1  NA 2.6  4.2 4.2
#> 2003  4.2  4.0  3.7 4.5 30.3 26.6  9.1  4.6 4.2 4.3  5.2 5.5
#> 2004  3.5  2.6  2.1 2.3  5.3 17.1  6.1  4.9 2.9 3.1  4.7 7.8
#> 2005  5.0  4.0  4.8 2.5  3.9  5.0  8.7  6.8 4.7  NA  5.9 5.2
#> 2006  4.2  6.8  3.7 2.7 16.7  9.9 27.8 17.7  NA 2.6  3.5 4.6
#> 2007  4.8  8.9  3.1 3.9  5.2  8.1 17.1   NA 7.0 8.1 17.0 8.0
#> 2008  5.3  4.6  5.6 3.5  3.2 17.3 27.3 13.8 6.6 5.9  6.6 5.9
#> 2009  5.1  3.0  2.9 2.3  2.6  2.6  8.7  5.2 4.6 4.7  4.6  NA
ts2df(chl27, mon1 = 10, addYr = TRUE, omit = TRUE)
#>       Oct Nov Dec Jan  Feb  Mar  Apr  May Jun Jul Aug Sep
#> 1979  2.1 2.2 1.7 1.9  1.8  2.4  3.8  2.3 4.8 1.6 3.9 2.1
#> 1984  1.5 1.5 1.4 1.9  2.8  3.0  9.8  3.5 1.2 1.7 2.3 2.9
#> 1987  1.3 1.2 1.1 1.4  1.4  5.1  5.9  5.1 2.9 1.7 2.0 2.0
#> 1997  2.2 2.3 1.4 4.0 12.6  6.9 11.4  1.9 1.3 2.7 1.7 2.9
#> 2000 16.2 2.4 2.2 3.3  3.2  9.3 13.4  3.3 1.7 1.8 2.6 3.0
#> 2003  4.2 4.0 3.7 4.5 30.3 26.6  9.1  4.6 4.2 4.3 5.2 5.5
#> 2004  3.5 2.6 2.1 2.3  5.3 17.1  6.1  4.9 2.9 3.1 4.7 7.8
#> 2008  5.3 4.6 5.6 3.5  3.2 17.3 27.3 13.8 6.6 5.9 6.6 5.9