Transpose a random array by permuting its dimensions and optionally resizing it.

# S3 method for rv
aperm(a, perm, ...)

Arguments

a

the random matrix to be transposed

perm

the subscript permutation vector. See the manual page for the gneric method aperm.

...

further arguments passed to aperm

Details

This is the rv-compatible version of the function aperm. It first applies

References

Kerman, J. and Gelman, A. (2007). Manipulating and Summarizing Posterior Simulations Using Random Variable Objects. Statistics and Computing 17:3, 235-244.

See also vignette("rv").

See also

Author

Jouni Kerman jouni@kerman.com

Examples


  x <- rvarray(rvnorm(24), dim=c(2,3,4))
  print(aperm(x))
#>             mean   sd   1% 2.5%   25%     50%  75% 97.5% 99% sims
#> [1,1,1]  0.02967 1.01 -2.3 -2.0 -0.67  0.0258 0.73   2.0 2.4 4000
#> [2,1,1] -0.02119 1.00 -2.3 -1.9 -0.71 -0.0263 0.64   2.0 2.4 4000
#> [3,1,1]  0.01338 1.01 -2.3 -1.9 -0.66  0.0125 0.68   2.0 2.4 4000
#> [4,1,1]  0.02752 1.00 -2.2 -1.9 -0.66  0.0106 0.71   2.0 2.4 4000
#> [1,2,1] -0.01783 0.99 -2.3 -1.9 -0.69 -0.0113 0.64   1.9 2.2 4000
#> [2,2,1]  0.00266 1.00 -2.3 -1.9 -0.69  0.0240 0.67   2.0 2.3 4000
#> [3,2,1]  0.00463 1.02 -2.4 -2.0 -0.67  0.0194 0.71   2.0 2.3 4000
#> [4,2,1] -0.00825 1.02 -2.4 -2.0 -0.67 -0.0245 0.66   2.0 2.5 4000
#> [1,3,1] -0.00583 1.01 -2.4 -2.0 -0.70  0.0247 0.68   1.9 2.2 4000
#> [2,3,1] -0.00065 1.00 -2.3 -2.0 -0.67  0.0159 0.68   2.0 2.4 4000
#> [3,3,1] -0.00290 0.99 -2.3 -1.9 -0.67  0.0036 0.65   1.9 2.2 4000
#> [4,3,1] -0.01747 0.98 -2.3 -2.0 -0.69 -0.0179 0.64   1.9 2.2 4000
#> [1,1,2]  0.00088 1.00 -2.4 -2.0 -0.69  0.0076 0.69   2.0 2.4 4000
#> [2,1,2]  0.00274 1.01 -2.3 -1.9 -0.70  0.0234 0.69   1.9 2.4 4000
#> [3,1,2]  0.00214 0.98 -2.4 -2.0 -0.64  0.0183 0.69   1.9 2.2 4000
#> [4,1,2] -0.02149 1.00 -2.3 -1.9 -0.70 -0.0011 0.66   1.9 2.3 4000
#> [1,2,2] -0.04093 0.99 -2.4 -2.0 -0.71 -0.0414 0.62   1.9 2.3 4000
#> [2,2,2] -0.02128 1.01 -2.3 -2.0 -0.72 -0.0226 0.66   2.0 2.3 4000
#> [3,2,2] -0.00444 1.00 -2.3 -1.9 -0.67 -0.0017 0.67   2.0 2.3 4000
#> [4,2,2]  0.01496 1.00 -2.4 -1.9 -0.66  0.0287 0.68   2.0 2.4 4000
#> [1,3,2] -0.00226 0.99 -2.3 -2.0 -0.65  0.0124 0.67   1.9 2.3 4000
#> [2,3,2]  0.03084 0.98 -2.3 -1.9 -0.62  0.0439 0.68   2.0 2.3 4000
#> [3,3,2] -0.00781 1.02 -2.3 -2.0 -0.68 -0.0115 0.67   2.0 2.5 4000
#> [4,3,2] -0.00508 1.02 -2.4 -2.0 -0.68 -0.0079 0.67   2.0 2.3 4000