vignettes/summary_2012.Rmd
summary_2012.Rmd
dt <- nla_load(2012)
tp <- select(dt$waterchem_wide, PTL_RESULT, UID) %>%
left_join(select(dt$wide_siteinfo, AREA_HA, SITE_ID, UID)) %>%
group_by(SITE_ID) %>%
summarize(tp = median(PTL_RESULT), area = median(AREA_HA) / 100)
## Joining, by = "UID"
chl <- select(dt$chla_wide, CHLX_RESULT, UID) %>%
left_join(select(dt$wide_siteinfo, SITE_ID, UID)) %>%
group_by(SITE_ID) %>%
summarize(chl = median(CHLX_RESULT))
## Joining, by = "UID"
secchi <- select(dt$secchi, SECCHI, SITE_ID) %>%
group_by(SITE_ID) %>%
summarize(secchi = median(SECCHI))
res <- reduce(list(tp, chl, secchi), left_join)
## Joining, by = "SITE_ID"
## Joining, by = "SITE_ID"
## Joining, by = "SITE_ID"
skimr::skim(res)
Name | res |
Number of rows | 20838 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
character | 1 |
numeric | 5 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SITE_ID | 0 | 1 | 12 | 13 | 0 | 1130 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
tp | 0 | 1.00 | 120.94 | 286.04 | 4.00 | 21.00 | 41.00 | 100.00 | 3636.00 | ▇▁▁▁▁ |
area | 0 | 1.00 | 4.62 | 39.54 | 0.01 | 0.11 | 0.30 | 1.05 | 1674.90 | ▇▁▁▁▁ |
chl | 90 | 1.00 | 26.75 | 53.16 | 0.00 | 3.03 | 8.00 | 26.80 | 764.64 | ▇▁▁▁▁ |
secchi | 1238 | 0.94 | 2.08 | 2.25 | 0.02 | 0.64 | 1.39 | 2.83 | 28.00 | ▇▁▁▁▁ |
depth | 9051 | 0.57 | 1.60 | 1.71 | 0.00 | 0.70 | 1.10 | 1.90 | 34.10 | ▇▁▁▁▁ |