
JSS

This is an Accepted Manuscript of an article published in the International Journal of

Geographical Information Science DOI: 10.1080/13658816.2015.1018833

Application of Inverse Path Distance Weighting for

high density spatial mapping of coastal water

quality patterns

Joseph Stachelek
South Florida Water Management District

Christopher J. Madden

Abstract

One of the primary goals of coastal water quality monitoring is to characterize spatial
variation. Generally, this monitoring takes place at a limited number of fixed sampling
points. The alternative sampling methodology explored in this paper involves high den-
sity sampling from an onboard flow-through water analysis system (Dataflow). Dataflow
has the potential to provide better spatial resolution of water quality features because it
generates many closely spaced (< 10 m) measurements. Regardless of the measurement
technique, parameter values at unsampled locations must be interpolated from nearby
measurement points in order to generate a comprehensive picture of spatial variations.
Standard Euclidean interpolations in coastal settings tend to yield inaccurate results be-
cause they extend through barriers in the landscape such as peninsulas, islands, and
submerged banks. We recently developed a method for non-Euclidean interpolation by
inverse path distance weighting (IPDW) in order to account for these barriers. The algo-
rithms were implemented as part of an R package and made available from R repositories.
The combination of IPDW with Dataflow provided more accurate estimates of salinity
patterning relative to Euclidean inverse distance weighting (IDW). IPDW was notably
more accurate than IDW in the presence of intense spatial gradients.

Keywords: non-Euclidean distance, spatial interpolation, flow-through sampling, salinity,
Florida Bay, estuary.

1. Introduction

One of the primary goals of water quality monitoring is to characterize spatial variation. How-
ever, the resolution of spatial features can be limited both by the widely-spaced fixed-point
design of monitoring programs and by spatially complex landscape features. The alternative
sampling methodology explored in this paper involves high density sampling from an onboard
flow-through water analysis system (Dataflow). Dataflow (Madden and Day 1992) has the
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potential to provide better spatial resolution of water quality features because it generates
many closely spaced (<10 m) measurements.

Regardless of the measurement technique, parameter values at unsampled locations must
be interpolated from nearby measurement points in order to generate a comprehensive picture
of spatial variations. Interpolation approaches vary in complexity from simple inverse distance
techniques to complex kriging algorithms (Zimmerman et al. 1999). In many settings, the
analyst can simply choose an interpolation technique based on the properties of the sampling
network and the spatial dependence of the variable of interest (Isaaks et al. 1989). In coastal
settings, however, interpolations can be confounded by the presence of landscape features
such as peninsulas, islands, and submerged banks. For example, two monitoring stations
geographically close to one another may be hydrologically separated by a peninsula.

As a result, standard interpolations that extend through barriers and do not account for
them are likely to provide inaccurate results. There are several existing methods for dealing
with the presence of barriers while using standard Euclidean interpolations. Most notably,
these include ”interpolation with barriers” whereby a static barrier is introduced in order
to isolate disparate portions of the study area (Krivoruchko and Gribov 2004; Soderqvist
and Patino 2010). The interpolation with barriers approach is not ideal because points are
excluded from the interpolation based on line-of-sight. As a result, the inherent connectivity
present in aquatic environments (water flow, diffusion) is not taken into account.

We developed an alternative method for interpolation using inverse path distance weight-
ing (IPDW) that honors barriers in the landscape while more accurately accounting for aquatic
connectivity because it can ”round corners.” IPDW belongs to a class of techniques that use
”in-water”path distances (non-Euclidean) rather than ”as the crow flies”(Euclidean) distances
as input to interpolation routines (Little et al. 1997). Unfortunately, these techniques have
received limited consideration in part because until recently they had not been implemented
within existing software tools. In this study, we utilize a software tool that uses path distances
as input to inverse distance weighting (IDW). IDW is a deterministic interpolation method
that has some disadvantages relative to geostatistical methods such as kriging because there
is no model fitting and thus no assessment of prediction error. Path distances have been
used as input to kriging with some success (Krivoruchko and Gribov 2004; López-Qúılez and
Muñoz 2009) but software tools are still under development.

This research is the first study that utilizes IPDW with a spatially dense water quality
dataset generated by Dataflow sampling. We explore the benefits and limitations of this tech-
nique using a case study set in Florida Bay, USA. Florida Bay represents an ideal candidate
for IPDW because it is a complex array of embayments and fragmented basins (Figure 1). In
addition, we were able to reliably test interpolation accuracy because of the high measurement
density afforded by Dataflow. We specifically compare IPDW with its Euclidean counterpart
IDW.

2. Methods

2.1. Field Data Collection

Field measurements were collected during shipboard cruises using a Dataflow onboard flow-
through collection system. While underway, the Dataflow receives a continuous stream of
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water from an onboard pump. This water is routed past a series of water quality probes that
measure the temperature, dissolved oxygen, specific conductivity, chlorophyll a, and chro-
mophoric dissolved organic matter (cdom) of pumped water at six second intervals. Salinity
is calculated from conductivity using the Practical Salinity Scale (PSS-78) and is defined as
a unitless ratio (IOC 2010). Each measurement is geo-referenced with an integrated global
positioning system (GPS) unit. The focus of the present study is on salinity and only salinity
measurements are presented hereafter. This choice was made in part because of the ecological
importance of salinity in Florida Bay and the fact that these measurements are generally
subject to less measurement error than other parameters.

Each survey generated approximately 6,000 data points across an approximately 600
km2 portion of northern Florida Bay, eastern Florida Bay, and southern Biscayne Bay (Fig-
ure 1). Cruises took place four times per year from 2006-2012 usually twice in the dry season
(November – May) and twice in the wet season (June - October). Cruises last several hours
and are thus quasi-synoptic. However, measurements were minimally affected by tides be-
cause the submerged banks in Florida Bay attenuate most of the tidal signal. The timescale
of complete surveys was only a fraction of the most significant tidal signal (14-d long-period
lunar component) in the eastern Bay (Wang et al. 1994). The route of each survey was
nearly identical and was intended to capture the influence of freshwater discharge from the
Everglades on Florida Bay.

Figure 1: Map of northern Florida Bay showing the approximate track of Dataflow surveys
(solid line), the grid used to subset full Dataflow surveys (grid), a representative subset of a
full survey used for interpolation (filled circles), and location of Figure 2 (dashed box). The
location of Florida Bay on the Florida peninsula is also shown (inset map).
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2.2. Statistical Analysis

A variant of inverse distance weighting (IDW) called inverse path distance weighting (IPDW)
was used in order to account for barrier effects during spatial interpolation (Suominen et al.
2010). IDW is a deterministic interpolation procedure that estimates values at prediction
points (V) using the following equation:

V =

n∑
i=1

vi
1
dpi

n∑
i=1

1
dpi

(1)

where d is the distance between prediction and measurement points, vi is the measured
parameter value, and p is a power parameter (Isaaks et al. 1989). The advantage of IPDW is
that it uses non-Euclidean ”path distances” for d. These path distances are calculated using
an algorithm that accounts for the cost of travel from one cell to the next.

Figure 2: Interpolation neighborhood (shaded polygon) for a point in Eagle Key Basin (filled
circle). Using inverse path distance weighting (a); Using inverse distance weighting (b). Note
that in the case of inverse path distance weighting the interpolation neighborhood is limited
by the cost-distance imposed by the land barrier.

A conventional application of path distance calculations might include route (road) planning
between two points in a mountain range (Collischonn and Pilar 2000). The analysis would
seek to weight distances of various route alternatives by their accumulated travel ”costs.”
These costs would be defined so that areas with extreme changes in elevation would be given
a high travel cost.

Ultimately, road construction might proceed along the route with the lowest cost-path.
In the present study, land areas are given an impossibly high travel cost in order to restrict
the interpolation neighborhood distances (d) to ”in-water” distances. IPDW was carried
out using the routines in the ipdw R package (Stachelek 2014). The order of operations to
calculate spatial weights followed Suominen et al. (2010). Path distance calculations were
computed following Csardi and Nepusz (2006) and van Etten (2014). Reproducible examples
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demonstrating package functions can be found in the ipdw documentation (http://CRAN.r-
project.org/package=ipdw).

The ipdw package computes path distances from each prediction point to each point in a
set of measurement points. Path distances are calculated by tracking the accumulated cell-to-
cell movement within an underlying cost raster. In this study, the cost raster was constructed
by converting a vector shapefile representing the islands and shallow banks within Florida
Bay and reclassifying open water and land areas to 1 and 10,000 respectively. The particular
values assigned to open water and land areas were intended to ensure that the maximum
cost path distance between interpolation and measurement points could not exceed the value
assigned to land areas. Shapefiles were obtained from the Center for Spatial Analysis at the
Florida Fish and Wildlife Conservation Commission (http://myfwc.com/research/gis/). The
cell size of the output raster was optimized in order to balance the need for the resolution of
narrow barrier features against the limitations of computation time for the IPDW procedure.
Optimization was performed by varying the size (grain) of the cost raster grid (50 – 100 m),
calculating the edge density of water/land areas using the functions presented in VanDerWal
et al. (2014), and visualizing this information using ”scalograms” (Rutchey and Godin 2009).
Scalograms are plots of cell size versus the value of a given landscape metric. A 60 meter
cell size was chosen because there was a marked change in the slope of the scalograms after
increasing the resolution from 60 to 70 m.

IPDW was performed on a subset of the full dataset because of the significant compu-
tation time associated with calculating path distances on the full dataset (> 6,000 measure-
ments per Dataflow survey). Points were randomly selected with equal probability from each
cell of a rectangular mesh ( 35 points per cell, 1 point per 1.2 km2 grid cell) to form the
training dataset. The remaining points form the validation dataset (discussed below). This
spatially-balanced selection strategy has the advantage of creating a more regular (as opposed
to clustered) data set. Interpolation accuracy has been shown to be greatly increased when
regularly sampled datasets are available (Isaaks et al. 1989; Zimmerman et al. 1999).

Interpolations were also performed using the standard Euclidean inverse distance weight-
ing (IDW) routine in order to judge the benefit of using IPDW (Eq 1). IDW and IPDW have
different interpolation neighborhoods by design. As a result, a given estimation point may be
computed from a different overall number of neighbors. Given this fact, we kept all parameters
(neighborhood size, power) the same during both procedures in order to standardize the way
in which weights were assigned to measurements within the variously defined interpolation
neighborhoods. Interpolation accuracy was determined using a cross validation procedure
that compared interpolated predictions against the validation dataset. The output was used
to calculate prediction mean absolute error (MAE) and root mean squared error (RMSE).
Although MAE and RMSE provide similar information and are qualitatively similar, MAE is
less sensitive to outliers. For this reason, we focus primarily on MAE as a diagnostic.

3. Results

A total of 23 Dataflow surveys were conducted from 2006 – 2012 (Table 3). Salinities oscillated
from an annual minimum at the end of the wet season (September-October) to an annual
maximum in at the end of the dry season (May-June). Observed salinities varied from near
fresh (<1) to hypersaline (>40). There was a general increasing trend in salinity with distance
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from the northeastern coastal embayments and there was a clear indication of a lower salinity
”plume” extending through the middle of northeastern Florida Bay and Eagle Key basin
(Figure 2, 3). This is consistent with previous studies describing the general salinity patterns
within Florida Bay (Kelble et al. 2007). A clear difference between past studies and IPDW
interpolations is that the contribution of low salinity water from individual tributaries is
clearly differentiable. For example, high salinities in Madeira Bay did not extend through the
barrier separating it from Eagle Key Basin (Figure 2, 3).

Table 1. Maximum, minimum, and range of measured salinities for each Dataflow survey

Date Max Min Range

01-24-2006 33.99 11.73 22.26
07-19-2006 40.18 10.83 29.35
09-06-2006 28.60 0.19 28.41
01-31-2007 35.03 18.57 16.46
07-24-2007 36.40 1.25 35.15
09-11-2007 42.86 3.54 39.32
01-08-2008 34.62 14.39 20.23
04-30-2008 51.22 17.14 34.08
08-26-2008 40.40 6.83 33.57
12-03-2008 34.68 7.54 27.14
04-28-2009 52.34 32.86 19.48
06-17-2009 48.09 9.21 38.88
10-26-2009 40.27 1.40 38.87
02-09-2010 33.25 1.18 32.07
04-27-2010 41.04 9.15 31.89
07-27-2010 41.97 2.40 39.57
02-15-2011 30.37 1.16 29.21
05-11-2011 48.83 14.83 34.00
06-28-2011 48.67 25.39 23.28
09-13-2011 38.03 2.72 35.31
03-29-2012 38.60 16.13 22.47
06-05-2012 37.19 0.00 37.19
08-14-2012 39.33 0.44 38.89

In addition, to spatial variability, Florida Bay water quality is often subject to marked interan-
nual variability (Table 3). During an extremely dry period in April 2009, there was extensive
hypersalinity (values greater than 40) extending from the bay into the northern embayments.
In contrast, during an extremely wet period in April 2010, hypersalinity was more restricted.
In general, the salinity transitions were more intense (abrupt) in April 2010 relative to April
2009. Interpolation error was higher in April 2010 coincident with these more abrupt salin-
ity transitions. This illustrates a general trend whereby larger spatial salinity ranges were
associated with higher interpolation error (Figure 5).
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Figure 3: IPDW interpolated salinity averaged across all surveys from 2006-2012.

Figure 4: Locations from the August 2012 survey where IPDW produced notably different
salinity results relative to IDW. Note that IPDW interpolations (a and c) account for barriers
whereas IDW interpolations have unrealistically extended through barriers (b and d).

7



Generally, the IPDW procedure prevented underestimation of salinity on the downstream
side of barriers and overestimation of salinity on the upstream side (Figure 4). The greatest
improvements in accuracy were found in the western portions of Florida Bay where hypersaline
basins are narrowly separated from brackish water embayments by multiple complex land
barriers.

On a system-wide basis, the IPDW procedure predicted salinity values with a range of
RMSE between 0.5-1.87 and a MAE between 0.29-0.94. Comparative IDW interpolations
predicted salinity values with a range of RMSE between 0.6-2.19 and a MAE between 0.36-
1.3. System-wide prediction error (MAE and RMSE) was significantly higher using the IDW
procedure relative to IPDW (Wilcoxon signed rank test, p < 0.01). Lower IPDW prediction
errors were more evident in specific basins such as Little Blackwater Sound (Figure 4b, 4d).
The range of MAE for Little Blackwater Sound was 0.14-1.92 and 0.13-5.43 for IPDW and
IDW respectively. IDW prediction errors for Little Blackwater Sound were significantly higher
than IPDW prediction errors (Wilcoxon signed rank test, p < 0.01).

Figure 5: Comparison between prediction mean absolute error and the spatial salinity range
for Dataflow surveys using IPDW (red points) and IDW (black points).

4. Discussion

In this study, our non-Euclidean interpolation (IPDW) method provided increased accuracy
and resolution of water quality features relative to Euclidean interpolation (IDW). This in-
creased accuracy was apparent in two ways. First, the results of both procedures showed
that higher interpolation errors (MAE) were associated with surveys when there was a larger
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range of measured salinities across the study area. As the range of salinities increased, spatial
gradients became more intense, and the benefits of IPDW became more evident (Figure 5).
The ability to recover the location and shape of intense spatial gradients is a unique benefit of
combining high density sampling with non-Euclidean interpolation. The second way in which
IPDW was beneficial was that it preserved the separation between nearshore embayments
where water bodies with distinct water quality characteristics are located in close proximity
to one another (Figure 4). These embayments are of great interest because they are sensi-
tive to variable freshwater discharge from the Everglades (Nuttle et al. 2000). Close tracking
of their condition is necessary in order to evaluate the impact of environmental restoration
projects designed to increase freshwater discharges to Florida Bay. Many of these projects
are part of the Comprehensive Everglades Restoration Plan (CERP).

However, in the open areas of Florida Bay, there was little improvement in accuracy.
This finding is consistent with Suominen et al. (2010) where interpolations were performed
across an area with few contiguous barriers and non-Euclidean methods provided little ben-
efit. In contrast, Greenberg et al. (2011) showed marked improvements in accuracy using
non-Euclidean interpolation within a stream network characterized by contiguous barriers.
Overall, non-Euclidean methods are likely to provide the most benefit when the spatial do-
main is bisected by contiguous barriers. In the absence of these barriers, Euclidean methods
may be sufficient (Suominen et al. 2010; Rivera-Monroy et al. 2011).

In addition to the presence of contiguous barriers within the spatial domain, there are
several important considerations to be weighed prior to implementing IPDW. First, non-
Euclidean ”path” distances could be used as input to a variety of geostatistical methods.
Throughout this study, we use our ipdw R package which takes path distances as input to
inverse distance weighting. Alternative applications that use path distances as input to kriging
are likely to be more powerful but have some potential pitfalls (see discussion in (López-Qúılez
and Muñoz 2009). López-Qúılez and Muñoz (2009) found path distance based kriging to
be effective while at the same time providing estimation of prediction errors. As software
becomes available, future studies will examine path distance based interpolation of spatial
data using a geostatistical approach (kriging). A second consideration is that interpolation
with path distances can be computationally demanding and difficult to implement. This can
be attributed to resource intensive nature of path distance calculations and the lack of built-in
routines in GIS software available outside of a scripting environment (Stachelek 2014).

This is the first study to combine non-Euclidean interpolation with high density Dataflow
sampling. Our methodology could be used to expand the spatial domain of interpolations
which have been limited in scope to along the survey track itself (Morse et al. 2011; Soderqvist
and Patino 2010; Xie et al. 2013). It should be noted, however, that the process of subsetting
the full dataset based on a grid will only provide a more regularly spaced dataset when the
survey track has followed a sufficient number of meanders. Subsetting linear survey tracks
such as those in Buzzelli et al. (2014) may be necessary in order to satisfy the limitations to
computation but will not provide a more regularly sampled dataset. An alternative to our
methodology is to remap the coordinates of measurement points into a new Euclidean space
that accounts for ”in-water” distances (Løland and Høst 2003). This may allow for the use
of traditional Euclidean interpolation methods while still accounting for barriers. Generating
this transformed output adds an additional level of complexity to processing routines.

Ultimately the ability of interpolation procedures to recover spatial water quality pat-
terns is a function of the underlying monitoring program design. To our knowledge, non-
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Euclidean distance calculations have yet to be applied to the design of coastal water quality
sampling. Potential applications include combining Dataflow and IPDW to examine opti-
mal spacing of measurement points. For example, Anttila et al. (2008) used dense geospatial
output to establish that the spatial representativeness (range) of single point chlorophyll mea-
surements was quite low. This may be particularly informative given that studies examining
non-Euclidean water quality interpolation have typically used sparse, spatially distributed
sampling designs rather than spatially dense data collection (Greenberg et al. 2011; Suomi-
nen et al. 2010).

Interpolated Dataflow output has a variety of potential applications. On a basic level,
accurate interpolations provide a spatially intensive snapshot of the water quality conditions.
This is especially useful in evaluating the state of the system and documenting the response
to extreme events such as hurricanes and droughts (Davis III et al. 2004). More applied
uses include the validation of remote sensing (Xie et al. 2013), ecological (Fourqurean et al.
2003; Madden and McDonald 2009), statistical (Marshall et al. 2011), and hydrologic models
(Nuttle et al. 2000). For future studies, researchers should consider using IPDW or related
non-Euclidean interpolation methods, given the proliferation of software tools, potential im-
provements in accuracy, and the more widespread adoption of Dataflow technology.
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